
 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 1

MANUAL

APPLICATIONS

FOR “CUA-USB” AND “CUA-ETH” CONTROL UNITS

NEWSON ENGINEERING NV

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 2

Table of Contents

1 LIBRARY RHOTHOR.DLL ... 3

1.1 LINKING THE LIBRARY WITH AN APPLICATION... 3
1.2 IMPLICIT LINKING ... 3
1.3 EXPLICIT LINKING .. 3
1.4 USING THE LIBRARY FROM WITHIN AN APPLICATION ... 3
1.5 ACCESSING FUNCTIONS .. 3
1.6 QUERY FUNCTIONS ... 4
1.7 EMULATE FUNCTIONS .. 4
1.8 CALIBRATION FUNCTIONS .. 5
1.9 FLASH FILE FUNCTIONS ... 5
1.10 CONTROL FUNCTIONS ... 6
1.11 CONDITIONAL FUNCTIONS .. 10

2 FUNCTIONAL OVERVIEW - INTERNAL CONTROLLER ... 11

3 LASER .. 12

4 CALIBRATION ... 14

4.1 2D-CALIBRATION ... 15
4.2 3D CALIBRATION ... 16

5 BEACON™ CALIBRATION SYSTEM ... 18

5.1 2D CALIBRATION ... 18
5.2 FLAWLESS STICHING .. 19
5.3 3D CALIBRATION ... 20

6 MARKING-ON-THE-FLY.. 21

6.1 CONSTANT SPEED ... 21
6.2 RESOLVER AB .. 21
6.3 ABSOLUTE OFFSET (XY2-100) ... 21

7 MASTER-SLAVE ... 22

8 LOCAL FLASH MEMORY .. 23

9 APPENDIX A: RHOTHOR.DLL LIBRARY FUNCTIONS ... 24

10 APPENDIX B: FILE FORMAT CALIBRATION DATA FILE.. 46

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 3

1 LIBRARY RHOTHOR.DLL

1.1 LINKING THE LIBRARY WITH AN APPLICATION

Before the functionalities of the control unit can be used within any application, the library "rhothor.dll" needs to be linked to

it. As with all Dynamic Link Libraries, implicit or explicit linking can be used. The installation CD contains the necessary files

to perform this linking.

DLL files on the installation CD-ROM:

Path Visual C++ \rhothor\src\dll\vc\

Path Borland C \rhothor\src\dll\bc\

1.2 IMPLICIT LINKING

When using implicit linking, the DLL is loaded during start-up of the application using that DLL. The application can

simply use the library functions like any other function in its source code. This way of linking is achieved as follows:

1. copy "rhothor.dll" to the application’s directory or to the windows default DLL directory. Usually this is

c:\windows\system32.

2. add library "rhothor.lib" to the project. (*)

3. include "rhothordll.h", the DLL header file, in the source code.

(*) In Borland C++ environments the command IMPLIB is used to create the lib file.

1.3 EXPLICIT LINKING

With explicit linking, applications must make a function call to explicitly load the DLL at run time. To explicitly link to a

DLL, an application one must:

1. Call LoadLibrary (*) to load the DLL and obtain a module handle. If successful, the function maps the DLL into the

applications address space.

2. Call GetProcAddress (*) from within the application for each function of interest to obtain a function pointer. This

pointer can then be used by the application to call the function.

3. Call FreeLibrary (*) when done with the DLL. This function releases the DLL resources.

(*) exact function name may differ with programming language or compiler type

1.4 USING THE LIBRARY FROM WITHIN AN APPLICATION

After linking, the library provides the application methods and properties to access, query, calibrate and control the

deflection system.

1.5 ACCESSING FUNCTIONS

Accessing functions provide the means to set-up a connection between application and the laser deflection system. This is

achieved using the following function:

summary

long rtSelectDevice(char* IP)

A distinction must be made between the CUA-USB and CUA-ETH versions of the control system. For the latter, the

argument is a string containing the IP-address of the control unit. In the former case the name of the usb device must be

used (this can be set in the Rhothor software and is particularly useful for larger set-ups using multiple deflection heads).

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 4

When using the device name "USB" the frist free USB rhothor device is addressed. For multihead systems the functions

rtGetFirstFreeUSBDevice and rtGetNextFreeUSBDevice can be used to build up a device list.

summary

long rtGetFirstFreeUSBDevice(char* Name)

long rtGetNextFreeUSBDevice(char* Name)

1.6 QUERY FUNCTIONS

Configuration of the control system must be done through the configuration software, see manual "A2G_Cfg". However,

the following family of functions allows the application to query configuration settings and status information of the

deflection system.

summary

name parameters units range

rtGetCanLink long Address

 long* Value

rtGetCounter long* Value

rtGetFieldSize double* Size mm

rtGetFieldSizeZ double* Size mm

rtGetID char* Name

rtGetIO long* Value

rtGetLaserLink long Address

 long* Value

rtGetMaxSpeed double* Speed mm/sec

rtGetResolvers double* X mm

 double* Y mm

rtGetScannerDelay long* Delay µsec

rtGetSerial long* Serial

rtGetSetpointFilter long* TimeConst µsec

rtGetStatus long* Memory bytes

rtGetVersion char* Version

1.7 EMULATE FUNCTIONS

It is possible to put the rhothor.dll in an emulation mode to generate flash jobs which can be transferred over a PLC to the

actual deflection head. The emulation functions allow to parameter the virtual hardware in order to generate the correct

flash job. Emulation mode is enabled by addressing a virtual hardware device. The virtual hardware device is addressed

through rtSelectDevice(“none”)

summary

name parameters units range

rtSetFieldSize double Size mm

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 5

1.8 CALIBRATION FUNCTIONS

The calibration functions allow for custom calibration settings required to compensate for errors induced by the optics in the

deflection head. See section 4 for more details on the calibration process and input data.

summary

name parameters units

rtAddCalibrationData const char* FileName

rtLoadCalibration

rtLoadCalibrationFile const char* FileName

rtResetCalibration

rtStoreCalibrationFile const char* FileName

rtAddCalibrationDataZ const char* FileName

rtLoadCalibrationFileZ const char* FileName

rtResetCalibrationZ

rtStoreCalibration

rtStoreCalibrationFileZ const char* FileName

rtStoreCalibrationFile const char* FileName

bcSamplePoint double X mm

 double Y mm

 long Row

 long Col

 double Sweep mm

 double* OffsetX mm

 double* OffsetY mm

1.9 FLASH FILE FUNCTIONS

The deflection control system is fitted with flash memory. This memory is formatted using a dedicated layout not compatible

with standard operating system calls. Therefore the content of the flash memory can only be altered by the use of the

library flash file functions.

summary

name parameters

rtIndexFetch long Index

rtFileUpload const char* SrcFile

const char* FileName

rtFileUploadAtIndex const char* SrcFile

const char* FileName

long Index

rtFileDownload const char* FileName

const char* DestFile

rtFormatFlash

rtEraseFromFlash const char* FileName

rtGetFileIndex const char* FileName

 long* Index

rtGetFlashFirstFileEntry char* Name

 long* Size

rtGetFlashNextFileEntry char* Name

 long* Size

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 6

rtGetFlashMemorySizes long* Total

 long* Allocated

rtFileClose

rtFileOpen long Mode

 char* FileName

rtFileFetch char* FileName

1.10 CONTROL FUNCTIONS

Control functions allow the application to send commands to the deflection control system during marking. Commands

received by the deflection control system are executed. To avoid that the system stalls, a buffer containing the list of

consecutive commands is used. This buffering has to be managed by the application and supports two modes of execution:

mode LIST_START and mode AUTO_START. Calling control functions prior to selecting an execution mode will generate

errors.

Mode LIST_START

This mode is selected by calling “rtListOpen(1)”. In LIST_START mode up to two command lists are used. This means

that the application can fill up one list while the other one is being executed. Execution of a list has to be started explicitly

by calling function “rtListClose()”. During execution of a list another function call to “rtListOpen(1)” will open a second list

for command entry. If the second one is closed before the running one is terminated, all its commands will be moved into

the running one.

Mode AUTO_START

This mode is selected by calling “rtListOpen(2)”. In AUTO_START mode only one command list is used. The list acts like

a FIFO between application and deflection control system. All marking commands will be automatically sent to the

deflection control system and marking will start immediately. When all commands are sent, the application needs to

close the list to release the final content for processing.

Mode BOOT_START

This mode is selected by calling “rtListOpen(3)”. In BOOT_START mode a static command list is completely stored on

on the boot sector of the control board. This means the command list will be automatically executed whenever the

control board boots. This mode is usefull in standalone applications. Due to the size of the boot sector the number of

control functions in this command list is limited. This time limitation can easily be avoided by using macro calls

“rIndexFetch”.

Mode LOAD_START

This mode is selected by calling “rtListOpen(4)”. In LOAD_START mode a static command list is completely stored on

on the local memory of the controller. The application has to fill up the complete list prior to its execution. Due to the size

of the local memory, the number of control functions in the list is limited. This time limitation can easily be avoided by

using macro calls “rIndexFetch”. A macro call takes up a few bytes of local memory but may contain a virtual endless list

of control functions stored in flash memory. Execution of the list is started by calling the function “rtListClose()”. Because

the complete list is stored on the local memory iteration statements (rtSetLoop / rtDoLoop) can be used to execute some

control functions 1, some or endless times. Execution termination can be forced with the rtAbort function.

List execution mode can be altered and execution can be aborted by the application at any time. In case of the latter, the

deflection control system will stop immediately and all remaining commands in the lists will be erased.

During command processing the deflection control system controls the laser through a gate signal. When no list is being

executed by the system, or when the system stalls, the laser is switched off.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 7

summary

name parameters units range gate (*) listmode (**)

rtAbort off n/a

rtArcTo double X mm on 1,2,3,4,F

 double Y mm

 double BF -1…1

rtArcMoveTo double X mm off 1,2,3,4,F

 double Y mm

 double BF

rtBurst long Time µsec on 1,2,3,4,F

rtCircle double X mm on 1,2,3,4,F

 double Y mm

 double Angle deg

rtCircleMove double X mm off 1,2,3,4,F

 double Y mm

 double Angle deg

rtDoLoop off 3,4

rtElse off 3,4

rtEndIf off 3,4

rtIfIO long Value off 3,4

long Mask

rtIncrementCounter off 1,2,3,4,F

rtJumpTo double X mm off 1,2,3,4,F

 double Y mm

rtJumpTo3D double X mm off 1,2,3,4,F

 double Y mm

 double Z mm

rtLineTo double X mm on 1,2,3,4,F

 double Y mm

rtLineTo3D double X mm on 1,2,3,4,F

 double Y mm

 double Z mm

rtListClose n/a n/a

rtListOpen long Mode 1,2,3 n/a n/a

rtMoveTo double X mm off 1,2,3,4,F

 double Y mm

rtMoveTo3D double X mm off 1,2,3,4,F

 double Y mm

 double Z mm

rtOpenCanLink long Baudrate Bd n/a 1,2,3,4,F

rtPulse double X mm pulsed 1,2,3,4,F

 double Y mm

rtPulse3D double X mm pulsed 1,2,3,4,F

 double Y mm

 double Z mm

rtResetCounter n/a 1,2,3,4,F

rtResetResolver long Nr n/a 1,2,3,4,F

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 8

rtScanCanLink long Address n/a 1,2,3,4,F

 long Node

 long Index

 long SubIndex

rtSendUartLink char* Data n/a 1,2,3,4,F

rtSetCanLink long Node n/a 1,2,3,4,F

 long Index

 long SubIndex

 char* Data

rtSetIO long Value off 1,2,3,4,F

 long Mask

rtSetImageMatrix double a11 n/a 1,2,3,4,F

 double a12

 double a21

 double a22

rtSetImageMatrix double a11 n/a 1,2,3,4,F

 double a12

 double a21

 double a22

 double a31

 double a32

rtSetImageOffsXY double X mm n/a 1,2,3,4,F

 double Y mm

rtSetImageOffsRelXY double X mm n/a 1,2,3,4,F

 double Y mm

rtSetImageOffsZ double Z n/a 1,2,3,4,F

rtSetJumpSpeed double Speed mm/sec n/a 1,2,3,4,F

rtSetLaser bool OnOff OnOff 1,2,3,4,F

rtSetLaserLink long Address 1,2,3,4,F

 long Value

rtSetLaserTimes long GateOnDelay µsec off 1,2,3,4,F

 long GateOffDelay µsec

rtSetLoop long Count off 3,4

rtSetMatrix double a11 off 1,2,3,4,F

 double a12

 double a21

 double a22

rtSetMaxSpeed double Speed mm/sec 1,2,3,4,F

rtSetOffsIndex long Index 1,2,3,4,F

rtSetOffsXY double X mm off 1,2,3,4,F

 double Y mm

rtSetOffsZ double Z mm off 1,2,3,4,F

rtSetOscillator long Nr 1,2,3 off 1,2,3,4,F

 double Period µsec <=1000000

 double PulseWidth µsec

rtSetOTF long Nr 1,2,3,4,F

 bool On

rtSetResolver long Nr 1,2 off 1,2,3,4,F

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 9

 double StepSize mm

 double Range mm

rtSetResolverRange long Nr 1,2,3,4,F

 double Range mm

rtSetResolverTrigger long Nr 1,2,3,4,F

 double Position mm

 long IO

rtSetSpeed double Speed mm/sec n/a 1,2,3,4,F

rtSetVarBlock long i 1,2,3,4,F

 char Data

rtSetWobble double Diam mm 1,2,3,4,F

 long Freq Hz

rtSleep long Time µsec off 1,2,3,4,F

rtWaitCanLink long Address 1,2,3,4,F

 long Value

 long long Mask

rtWaitIO long Value off 1,2,3,4,F

 long Mask

rtWaitPosition double Window 1,2,3,4,F

rtWaitResolver long Nr 1,2 off 1,2,3,4,F

 double TriggerPos mm

 long TriggerMode 1,2

(*) Legend on gate signals

n/a: not applicable

off: gate off

on: gate on

pulse: off - gate on during 5 µsec - off

(**) legend on supported list modes

n/a: not applicable

1: usable in list mode 1 – LIST_START

2: usable in list mode 2 – AUTO_START

3: usable in list mode 3 – BOOT_START

4: usable in list mode 4 – LOAD_START

F: usable in flash job creation (rtFileOpen)

All control functions return an error code (data type long). For most of them, their values are as listed below. See the

appendix for deviating return codes.

name value description

ERR_OK -1 control command added to the list successfully

ERR_BUSY 2 the control system is processing a job

ERR_JOB 3 there is no open list, call “rtListOpen”

ERR_HARDWARE 5 the deflection control system is not responding

ERR_MEMORY 15 can't allocate memory

ERR_DATA 13 the control command holds invalid parameters

ERR_IMPLEMENTATION 23 the command is not supported

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 10

ERR_LASER_LOW 42 insufficient laser power

ERR_TRACKING 43 system is not running

ERR_FILE_IN_USE 47 file in use in bootstart

1.11 CONDITIONAL FUNCTIONS

Statements in the list are normally executed sequentially in the order in which they have been added to the execution list.

This is called sequential execution and this is the default program flow. In order to generate stand-alone scripts (ListMode 3

and 4) some conditional statements and iterative statements exist to modify the program flow.

summary

name parameters units range gate (*) listmode (**)

rtDoLoop off 3,4

rtDoWhile off 3,4

rtElse off 3,4

rtElseIfIO

Value off 3,4

Mask

rtEndIF off 3,4

rtIfIO

Value off 3,4

Mask

rtWhileIO

Value off 3,4

Mask

rtSetLoop LoopCounter off 3,4

rtSuspend off 3,4

rtWhileIO … rtDoWhile Statements

Executes a series of statements as long as a given condition is True. The condition is evaluated through the state of one or

more IO’s. The rtWhileIO … rtDoWhile can be nested to any level. Each rtDoWhile() matches the most recent rtWhileIO.

When rtWhileIO(0,0) is used the loop will run for ever (or untill the program is aborted through rtAbort)

rtSetLoop … rtDoLoop Statements

Repeats a series of statements a number of times. When the loop counter is set to 0 the loop will run for ever (or untill the

program is aborted through rtAbort) The rtSetLoop … rtDoLoop statement cannot be nested.

rtIfIO … [rtElseIfIO …] [rtElse …] rtEndIf Statements

Conditionally executes a group of statements depending of the value of a condition. The condition is evaluated through the

state of one or more IO’s.

rtSuspend

Suspend system. System can be resumed through Ethernet commando.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 11

2 FUNCTIONAL OVERVIEW - INTERNAL CONTROLLER

control command interpreter

Gate XY Z

offset

transformation
matrix

master out XY

slave in XY

marking on the fly XY

shifter

rtSetOffsXY

rtSetMatrix

XY

correction

XY Z

Gate

mirrorX
mirrorY

mirrorZ

swapXY

Laser

Gate

execution list

control commands

rt SetLaserTimes

XY

offset

XY

rtSetOffsZ

XY Z

During marking, the deflection control system receives control commands through a list which are interpreted and executed

by a command interpreter. In this interpreter, X-, Y- and Z- co-ordinates are generated together with a gate signal for laser

control. Before being fed to the regulators, the coordinates pass through a number of functions which are capable of

handling transformations such as offset, rotation and image correction. Special function blocks handle additional coordinate

processing which are used when the deflection control system is marking on-the-fly or when it is operated in a master-slave

mode. A shifter function block handles the required gate on and off delays of the gate signal.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 12

3 LASER

CUA control units can interface with nearly every kind of laser. The triggering of the laser is synchronized with steering of

the motors. The deflection control system uses its IO pins to interface with external machine components. IO pins 5,6 and 7

are intended to be used for controlling the laser. Linked to each of those pins is an oscillator that can be used to generate

complex laser signals. Nearly any desired laser signal can be generated by combining those oscillators with the gate

signal. Like all IOs, IO 5, 6 and 7 are compatible with the RS485 standard. Some additional conversion circuitry may be

needed to physically connect the signals from the deflection control system to the laser.

Overview laser signals/functions

1. gate with separately setable laser on and laser off delays

2. gated burst for external laser triggering

3. separate gate for first pulse suppression

4. pulse with modulation to set laser power

When a laser is configured for internal triggering or works in CW-mode, only a gate signal needs to be supplied by the

deflection control system. The laser frequency can be set through an additional serial link between the application

computer and the laser. Any of the three IO’s on the deflection control system can be used to generate the gate signal.

Before the gate signal is available on the connector, the application needs to set the output state of the selected pin by

calling “rtSetIO”. Output state of all IO’s are reset on power-up. The motors will move but the gate signal will not be

transmitted to the laser when a marking is started without prior setting of the pins output state. Running markings without

activating the main laser can be used on applications that have an additional lineout laser. They are used as simulation

runs. Because the motors still move, the alignment laser shows where the actual marking would be.

When the laser is configured for external triggering the deflection control system has to generate burst signals to activate

the laser. For the generation of laser signals the system comprises three programmable oscillators. The use of those

oscillators allows the application to alter the laser parameters without communication overhead. To generate an external

trigger signal the preferable port is IO7. This pin is linked with oscillator 3, which is synchronized with rising flanks of gate.

Frequency and pulse width of the oscillator needs to be set by calling “rtSetOscillator(3,..)” before the gate signal is

activated.

How to set-up a laser for external triggering ?

1. connect IO7 to the external trigger of the laser

2. configure IO7 as "OUT * Gate * OSC3" (*)

3. use “rtSetIO(64,64) in the command stream to set the output state of IO7

4. use "rtSetOscillator(3,...)" in the command stream to set laser frequency

(*) use configuration software, see manual “A2G_Cfg”

On a diode pumped solid state laser, the energy is modulated by controlling the pulse repetition rate and diode current.

When the laser is configured for external triggering the pulse repetition is set by configuring oscillator 3. On most lasers the

diode current can be set through an analog interface. A deflection control system does not have analog outputs but it can

use its oscillators to generate pulse width modulated signals. External low pass filters can then be used to convert those to

an analog voltage. In this topology the diode current on the laser can be changed as easy as its trigger frequency.

Changing oscillator settings during the command stream, changes the diode current. IO5 is the preferable pin for external

power control.

Laser activation and power control are handled over a single input on common CO2 lasers. There is no analog or separate

trigger input. The laser is activated by applying a modulated signal. The pulse width of the applied signal controls the lasers

output power. Removing the signal from the power control input turns the laser off. On some lasers wake up pulses need to

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 13

be fed into their power control input when they are not activated. Gate controlled multiplexing between oscillator 1 and

oscillator 2 is available on IO5. The application can configure oscillator 1 to set the laser power for marking. Oscillator 2 can

be set to generate the wake up signal.

How to set-up a laser for external power control ?

1. connect IO5 through conversion electronics with analog power pin of the laser

2. configure IO5 as "OUT * OSC1" (*)

3. use “rtSetIO(16,16)” in the command stream to set the output state of IO5

4. use "rtSetOscillator(1,...)" in the command stream to set laser power

(*) use configuration software, see manual “A2G_Cfg”

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 14

4 CALIBRATION

Deflection systems suffer from positional errors resulting from different sources.

Common error sources:

 linearity error of the motor

 pin cushion distortion

 f-theta distortions

 alignment problems

 ...

CUA control units handle these errors by adding counter errors during movement of the laser beam. Those counter errors

are stored in local DSP memory for quick access. The CUA control allocates a predefined memory block which contains the

calibration table. This table is automatically loaded in the DSP memory on bootup. You can setup the default calibration

table through rhothor.exe. Alternatively calling “rtLoadCalibrationFile” will replace the current calibration table with the

calibration data from a file stored on the harddisk.

In addition to previous mentioned error sources 3D-marking systems have to cope with other issues. If a 3D-deflection

system is being used without a flat field f-theta lens the obvious error source is the shape of the focal area. This area is

spherical instead of flat. With or without a flat field f-theta lens the size of the marking changes with the distance between

focal area and mirror surfaces of the deflection system.

3D-error sources

 focal area is spherical (*)

 optical amplification is a linear function of focal distance

Calibration challenges are not limited to motor motions. Also laser power can vary as a function of motor positions. The

deflection control system uses up to 3 oscillators to control the laser. Any of those oscillators can be set to be mapped. In

that case the pulse width of that oscillator is modulated based upon the mapping data.

Laser error sources

 mirror reflectivity changes with angle

 diameter laser spot changes with position

 absorption of laser light in f-theta lens changes with position

The control unit offers solutions for all those error sources. The calibration algorithm is based on look-up tables. The XY-

marking area is divided by 32*32 equal sized sub fields. The look-up table holds offset values for each edge point of those

fields. By grouping adjacent edges, the calibration table holds data for 33*33 edge points.

for each edge point 8 values are stored:

1. OffsetX for Z=0

2. dOffsetX/dZ

3. OffsetY for Z=0

4. dOffsetY/dZ

5. OffsetZ for Z=0

6. dOffsetZ/dZ

7. PWMfactor for Z=0 (*)

8. PWMfactor/dZ

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 15

4.1 2D-CALIBRATION

Schematical flow of a 2D-calibration

1 2

CalibrationSizeX

C
a

lib
ra

ti
o

n
S

iz
e

Y

exact position

actual
position

Nx

Nx+1

Nx calibration points

Ny calibration points

Nx*Ny

X:CalibrationSizeX;Nx

Y:CalibrationSizeY;Ny

CalibrationTable
33 x 33 x 8

deflection system

rtAddCalibrationData

CalibrationFile

rtStoreCalibrationFilertLoadCalibrationFile

...;(ErrX_Nx*Ny; ErrY_Nx*Ny)

(ErrX_1; ErrY_1);(ErrX_2; ErrY_2);...

ErrX = actual-exact

ErrY = actual-exact

CalibrationData

Fieldsize

X

Y

Calibrating a deflection system starts by defining the calibration size. Generally the calibration will not be done over the

complete marking area, but rather a restricted portion of it. The field size is the total range the deflection system can cover

whereas the calibration size is the part of the coverage that is desired to be used.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 16

Marking a grid of crosses and measuring their position offsets is a common way to gather distortion data. The number of

those crosses can be chosen freely. The measured distortion data has to be linked into a file. The current calibration can

then be updated with this distortion file by calling library function “rtAddCalibrationData”. Generating a calibration is an

iterative process. After the first run the measured offsets will likely to be large. Adding those offsets to the current

calibration will significantly change the motor positions and movement meaning that distortion in those new positions is

likely to be different. Therefore the calibration run needs to be repeated a few times. Not all the runs need to be done with

the same calibration size or the same number of calibration points. It is a common practice to start the first calibration run

with 3*3 calibrations points and increase the number of calibration points as the iteration progresses.

Steps for making a calibration file:

1. call library function “rtResetCalibration” or “rtLoadCalibrationFile” to initialize the calibration

2. define the calibration size (< field size)

3. define the number of calibration points 3*3, 5*5, ...

4. mark and measure the calibration points

5. link measurements in a file

6. call library function "rtAddCalibrationData" to update the calibration

7. repeat from step 3 if necessary

8. call library function "rtStoreCalibrationFile" to store the new calibration to disc.

9. call library function “rtStoreCalibration” to store the calibration as default calibration on the controller board

4.2 3D CALIBRATION

The control unit supports true 3D-marking. If a deflection system fitted with a Z-motor is used as a full 3D-system, it needs

to be calibrated on 2 Z positions.

Steps for making a 3D-calibration file:

1. call library function “rtResetCalibration” or “rtLoadCalibrationFile” to initialise the calibration

2. define the calibration size (< field size)

3. define the number of calibration points 3*3, 5*5, ...

4. go to the first Z position, Z1

5. mark and measure the calibration points at Z1

6. go to the second Z position, Z2

7. mark and measure the calibration points at Z2

8. link measurements in a file

9. call library function "rtAddCalibrationData" to update the calibration

10. repeat from step 3 if necessary

11. call library function "rtStoreCalibrationFile" to store the new calibration to disc.

12. call library function “rtStore Calibration” to store the calibration as default calibration on the controller board

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 17

Format 3D-CalibrationData

X

Z

Y1 2 Nx

exact position

actual
position

 ErrZ =
actual-exact

 ErrY =
 actual-exact

ErrX = actual-exact

X:CalibrationSizeX;Nx
Y:CalibrationSizeY;Ny
Z:Z1;Z2
(Z1_ErrX_1;Z1_ErrY_1;Z1_ErrZ_1);
(Z1_ErrX_2;Z1_ErrY_2;Z1_ErrZ_2);...
...;(Z1_ErrX_Nx*Ny;Z1_ErrY_Nx*Ny;Z1_ErrZ_Nx*Ny)
(Z2_ErrX_1;Z2_ErrY_1;Z2_ErrZ_1);
(Z2_ErrX_2;Z2_ErrY_2;Z2_ErrZ_2);...
...;(Z2_ErrX_Nx*Ny;Z2_ErrY_Nx*Ny;Z2_ErrZ_Nx*Ny)

CalibrationData

Z2

Z1

Nx*Ny

Nx+1

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 18

5 BEACON™ CALIBRATION SYSTEM

In general generating calibration data is done by first marking a number of crosses. In a second step those crosses are

measured by a camera using image processing. BEACON™ calibration system combines lasering and image processing in

a single device. It allows calibration without the need of a camera and image processing software.

On 3D-deflection systems the BEACON™ calibration system has also an auto focus function. The library function

"bcSamplePoint3D" returns offset values for X, Y and Z. The offset Z value is the distance between the surface of the

BEACON™ calibration system and the focal plane.

The BEACON™ calibration system has one or many sample holes depending on the type. Every sample hole can be seen

as a basic camera system. Images of all those camera systems are added to form a single compound picture. All

measurements are done on this picture.

A measurement cycle using a BEACON™ calibration system is started by calling library function "bcSamplePoint" or

"bcSamplePoint3D". Using synchronized marking and measuring, position deviation between laser beam and sample hole

is obtained. To avoid actual marking lines on the surface of the BEACON™ calibration system, the laser should be set at

minimal output power. The ideal laser for a BEACON™ calibration system is a CW laser. If the machine uses a Q-switched

laser, a high frequency should be selected. A high frequency will reduce pulse energy and helps to avoid actual marking on

the surface of the BEACON™ calibration system.

5.1 2D CALIBRATION

Steps for 2D-calibration using a BEACON™ calibration system

1. place the BEACON™ calibration system beneath the deflection system

2. call library function “rtResetCalibration” or “rtLoadCalibrationFile” to initialize the calibration

3. run a small job to set the laser parameters, use high laser frequencies for accurate measurements (>10kHz)

4. define the calibration size (< field size and should fit on the BEACON™ measuring hole grid)

5. define the number of calibration points 3*3, 5*5, ... (should fit on the BEACON™ measuring hole grid)

6. for each calibration point define row/column of the appropriate measuring hole on the BEACON™ system

(row=0 and column=0 is the top left measuring hole) and use these parameters in the function “bcSamplePoint“ to

measure the point offsets

7. link all measurements in a file

8. call library function "rtAddCalibrationData" to update the calibration

9. repeat from 7 if necessary

10. call library function "rtStoreCalibrationFile" to store the new calibration to disc.

NOTE:

When measuring a calibration point, the

apropriate measuring hole has to be selected.

This is the measuring hole that fits the

calibration point. A measuring hole is defined

by a row and column number. When the USB

connector lays at the right hand side then row

0 defines the top row and column 0 defines the

left column.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 19

5.2 FLAWLESS STICHING

Often an XY table is used when the size of the marking is larger than the marking area of the deflection system. The

marking is split into parts and is processed sequentially by moving the workpiece using the table. A common problem lies in

aligning the axis system of the deflection system with the axis system of this table. Aligning the deflection system with the

XY-table can be done automatically by using a single cell on a BEACON™ calibration system.

For the BEACON™ every sample point on its surface is the same. During the calibration, the XY table is used to move one

sample hole off the BEACON to the different calibration positions. All calibration points are measured using this one sample

hole. Consequently the ideal positions of the calibration points are layed out using the axis system of the XY-table. After

processing a complete calibration cycle the X- and Y-axis of the deflection system lies parallel to the X and Y system of the

XY table. Stitching of marking fields is flawless.

The offset values returned by the functions “bcSamplePoint” or “bcSamplePoint3D” need to be logged. When all the

calibration points are measured the calibration tables of the deflection system can be updated by calling

“rtAddCalibrationData”. Care must be taken that only the image distortion and axis alignment errors are calibrated out of

the deflection system. At the start of the calibration, the sample hole of the BEACON must be placed exactly beneath the

zero point of the deflection system. Otherwise the axis system of the deflection system will also be shifted by the

calibration. Measuring the position accuracy of the BEACON prior to the calibration can be done by calling

“bcSamplePoint(0,0,Row,Col,Sweep,X,Y) ”. The return values can be used to offset the table before starting the actual

calibration measurements. Row and Col should be set on the center value.

Steps for 2D-calibration using a BEACON™ calibration system and an XY table

1. put the BEACON™ calibration system on the XY table (*)

2. call library function “rtResetCalibration” or “rtLoadCalibrationFile” to initialise the calibration

3. run a small job to set the laser parameters

4. use the XY table to position the BEACON™'s centre sample point beneath the zero position of the deflection

system

5. measure the offset using library function bcSamplePoint(0,0,Row,Col,Sweep,&OffsX,&OffsY)

6. if the returned offset is too high, use it as a table offset and repeat from step 4

7. define the calibration size (< field size)

8. define the number of calibration points 3*3, 5*5, ...

9. use the XY table to position BEACON™'s centre sample point to the first point (X1,Y1) that must be calibrated

10. measure this point offset using library function bcSamplePoint(X1,Y1,Row,Col,Sweep,&OffsX,&OffsY)

11. log the measurement

12. use the XY table to position BEACON™'s centre sample point to the next point (Xi,Yi) that must be calibrated

13. measure this point offset using library function bcSamplePoint(Xi,Yi,Row,Col,Sweep,&OffsX,&OffsY)

14. log the measurement

15. repeat from step 12 for all the points that need to be calibrated

16. link measurements in a file

17. call library function "rtAddCalibrationData" to update the calibration

18. repeat from step 8 if necessary

19. call library function "rtStoreCalibrationFile" to store the new calibration to disc.

(*) BEACON™'s top surface needs to be in the FOCAL plane of the deflection system.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 20

5.3 3D CALIBRATION

The calibration table concept supports full 3D-calibration. To achieve this the planar calibration has to be executed on 2 Z

levels.

Steps for 3D-calibration using a BEACON™ calibration system and a Z axis

11. place the BEACON™ calibration system beneath the deflection system

12. call library function “rtResetCalibration” or “rtLoadCalibrationFile” to initialise the calibration

13. run a small job to set the laser parameters

14. define the calibration size (< field size)

15. define the number of calibration points 3*3, 5*5, ...

16. go to the first Z position, Z1

17. for each calibration point call bcSamplePoint3D(Xi,Yi,Z1,Row,Col,Sweep,&OffsX,&OffsY,&OffsZ) to measure its

offsets

18. go to the second Z position, Z2

19. for each calibration point call bcSamplePoint3D(Xi,Yi,Z2,Row,Col,Sweep,&OffsX,&OffsY,&OffsZ) to measure its

offsets

20. link all measurements in a file

21. call library function "rtAddCalibrationData" to update the calibration

22. repeat from step 5 if necessary

23. call library function "rtStoreCalibrationFile" to store the new calibration to disc.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 21

6 MARKING-ON-THE-FLY

Marking-on-the-Fly is a common used way to increase machine performance. Moving parts that have to be marked do not

need to be mechanically stopped before processing. Being able to perform Marking-on-the-Fly does not only reduce idle

times between markings but also reduces overall machine complexity. The control unit provides several Marking-on-the-Fly

solutions. All those solutions are supported for both X- and Y-axis.

Marking-on-the-Fly solutions

1. constant speed

2. resolver AB

3. absolute offset

Marking on the fly must be enabled using the configuration software, see manual “A2G_Cfg”.

6.1 CONSTANT SPEED

In this mode the speed of the part that is being marked is assumed to be constant during the complete marking. Before the

marking can be started, this speed has to be communicated to the deflection control system.

6.2 RESOLVER AB

This mode allows complete freedom of the part's movement during his marking. The position of the part is monitored using

a 2 phase resolver. This resolver is connected with the deflection control system over 2 designated IO's. One IO is used for

the resolvers A phase the other one for the resolvers B phase. Every flank received from these IO's corresponds with a

movement equal to a step size. The phase relation between the resolvers A and B signals determines the direction of the

movement. The step size can be set using the library function "rtSetResolver".

6.3 ABSOLUTE OFFSET (XY2-100)

This mode is the XY2-100 compatible mode. The deflection control system receives X and Y offset values from an XY2-100

compatible output device. See data sheet XY2-100

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 22

7 MASTER-SLAVE

Master-Slave marking is a configuration wherein several deflection systems are doing the same marking. The master is

processing the vector stream and controls the laser. The X and Y co-ordinates of the generated set points are broadcasted

by the master control unit towards all connected slaves. Rotation and scaling of those co-ordinates can be set

independently for each member of the master-slave network. Each member has its own local parameters. Those

parameters have to be set prior to the marking.

Operations done by the Master operation during marking

1. fetch and process command

2. generate XYZ co-ordinates

3. broadcast XY co-ordinates (*)

4. rotate and scale (local transformation matrix)

5. add offset (local offset vector)

6. add calibration data (local calibration tables)

7. steer motors and laser

(*) only X and Y co-ordinate is broadcasted by the master

Operations done by Slave deflection system during marking

1. receive XY co-ordinates from master

2. rotate and scale (local transformation matrix)

3. add offset (local offset vector)

4. add calibration data (local calibration tables)

5. steer motors

During the marking the XY co-ordinates are broadcasted by the master towards all the slaves through the Master-Slave

network. One master can have an unlimited number of slaves. The connection between those control units is done by 2

twisted pair cables. They start at the master then they pass slave type 1 systems to end at a slave type 2 system. This

wiring is needed to have a correctly terminated network, see drawing.

Master-Slave network

master: IO1/2 terminated

slave type 1: IO5/6 no termination

slave type 2: IO1/2 terminated

Master-Slave operation can also be used in 3D-systems. Because the master does not broadcast the Z co-ordinates,

marking instructions like "rtLineTo3D" have to be avoided. However, each Master-Slave network element can have a local

Z offset and has full operational use of its calibration tables.

A Master-Slave operation is commonly used to mark a raster of similar components. The number of components in such a

raster is likely to change. An obvious reason could be that the raster is not always complete. The raster can comprise

missing or defect parts that don't have to be marked. Laser light however is routed towards all the deflection systems by the

use of beam splitters. Mounting shutters before each deflection system or providing a beam dumps for each deflection

system provides a mean to switch on and off markings on the raster.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 23

8 LOCAL FLASH MEMORY

CUA control units are fitted with flash memory. The systems can therefore be operated without computer. Instead of data

streaming, the image data is stored on the local flash. The deflection control system uses a dedicated file management

system to handle the contents on the flash. The data stored in this memory is not accessible over the operation system.

Accessing the data is only possible through the library. The library comprises functions that allow an application to store

and retrieve data from the flash memory. Files on the flash are created using the functions rtFileOpen and rtFileClose.

When a file is opened all function calls to the library are not executed but logged on the flash.

control function macros

Control functions can be stored to flash as control function macros. When, during processing of control functions, a function

call “rtFileFetch (mymacro)” is encountered, the deflection control system will replace this with the contents from the file

“mymacro”. Recursive calls of “rtFileFetch” are not supported. This means that the control functions stored in macros may

not contain a function call “rtFileFetch”. The control functions “rtListOpen”, “rtListClose”, “rtSetLoop” and “rtDoLoop” are

also not allowed in control function macros. Beside said functions all control functions listed in chapter 1 are allowed to be

used in the macros.

Library function calls to create a control function macro on flash comprising a single line. The line can afterwards be

marked by calling the control function rtFileFetch(mymacro).

rtFileOpen(“mymacro”);

rtSetSpeed(1000);

rtJumpTo(0,0);

rtLineTo(10,0);

rtFileClose();

autoexec

When the system is operated without central application computer, it must be able to start list processing automatically.

Control functions can be stored to flash under the bootsector. When the deflection control system is powered on, it scans

the flash if this bootsector is filled in with a bootscript. When the file is found, its execution list is started automatically. The

function call sequence in this file must start by calling “rtListOpen(3)” and end with a call to “rtListClose()”.

Library function calls to create the file “autoexec” on flash

rtListOpen(3);

rt…

rtListClose();

Local flash is commonly used when the deflection system is operated in an environment without dedicated application

computer. However control code stored in local flash can also be combined with standard command streaming. The

application can use the local flash to store recurrent marking data prior to the actual marking. During the marking the

command stream can be just the function call "rIndexFetch". This minimises the bandwidth between application computer

and controller during marking.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 24

9 APPENDIX A: RHOTHOR.DLL LIBRARY FUNCTIONS

9.1.1 bcSamplePoint

long bcSamplePoint(double X, double Y, long Row, long Col, double Sweep, double* OffsetX, double* OffsetY)

This method measures the position deviation of a calibration point at co-ordinate (X,Y) using a Beacon device. Row and

Col determine the position of the measuring hole on the Beacon device, used for calibration. Row=0, Col=0 is the top left

measuring hole. Sweep length determines the line length used during measuring process. This value should be larger then

3mm. Too large values can result in invalid measurements.

Parameters

X X co-ordinate exact position calibration point

Y Y co-ordinate exact position calibration point

Row row of the measuring cell on the Beacon device

Col column of the measuring cell on the Beacon device

Sweep sweeping length used during the measuring process on the Beacon device.

OffsetX measured X error = measured actual X position – exact X position calibration point

OffsetY measured Y error = measured actual Y position – exact Y position calibration point

Deviating return codes

ERR_HARDWARE, 5 no Beacon device available

ERR_LASER, 42 laser power is set too low

9.1.2 rtAbort

long rtAbort()

This function aborts a running command list.

9.1.3 rtArcTo

long rtArcTo(double X, double Y, double BF)

This function marks an arc, starting from the current position to co-ordinate (X, Y) using the BF as bulge factor. The bulge is

the tangent of 1/4 the included angle for an arc segment, made negative if the arc goes clockwise from the start point to the

end point.

ca.
Bulge Factor

Angle

Current
Position

(X,Y)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 25

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

BF bulge factor, 0 indicates a straight segment, 1 is a semicircle

9.1.4 rtArcMoveTo

long rtArcMoveTo(double X, double Y, double BF)

Same as rtArcTo, but without enabling the gate signal for the laser.

9.1.5 rtAddCalibrationData

long rtAddCalibrationData(const char* FileName)

When a system is calibrated a number of calibration points have to be measured. The results of those measurements have

to be grouped in calibration data as a list of error values. With this method the gathered calibration data can be added to

the current calibration.

Parameters

FileName 0 terminated string containing the full file name and path

9.1.6 rtAddCalibrationDataZ

long rtAddCalibrationDataZ(const char* FileName)

Same as rtAddCalibrationData but for Z-axis calibration.

9.1.7 rtBurst

long rtBurst(long Time)

This command adds a burst command to the list. During execution of a burst the gate signal is activated while the motors

are standing still.

Parameters

Time duration of burst in µsec

9.1.8 rtCircle

long rtCricle(double X, double Y, Angle)

Marks a circular path of length Angle from the current position around a center point defined by X and Y.

Parameters

X center X coordinate of the circle

Y center Y coordinate of the circle

Angle The angle travelled around the center point

9.1.9 rtCircleMove

long rtCircleMove(double X, double Y, double Angle)

Same as rtCircle, but without enabling the gate signal for the laser.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 26

9.1.10 rtCharDef

long rtCharDef(long Ascii)

This function is the opening statement of a character definition. All marking commands following this statement define the

shape of the character to be defined. The following example illustrates the definition of the letter "A":

rtFontDef("custom");

rtCharDef(65);

rtJumpTo(0,0);

rtLineTo(2.5,5);

rtLineTo(5,0);

rtSetImageOffsRelXY(0,5);

rtCharDef(66)

...

rtFontDefEnd();

When defining characters it is customary to start at position (0,0) and use relative image offsets to indicate the starting

position of the next character. In the above example, "rtSetImageOffsRelXY" defines the point at which the following

character in a string would start. See "rtSetVarBlock" and "rtVarBlockFetch" on how to mark strings.

Parameters

Ascii Ascii code of the character to be defined.

9.1.11 rtDoLoop

long rtDoLoop()

This is the closing statement for an rtSetLoop instruction and starts the execution of the loop when called.

9.1.12 rtDoWhile

long rtDoWhile()

This is the closing statement for an rtWhileIO instruction.

9.1.13 rtEraseFromFlash

long rtEraseFromFlash(char* FileName)

This command deletes an existing file from the flash.

Parameters

FileName The name of the file to be erased from the flash.

9.1.14 rtElse

long rtElse()

Else-statement for the "rtIfIO" function.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 27

9.1.15 rtElseIfIO

long rtElseIfIO(long Value, long Mask)

Introduces a IO state condition to be tested if the previous IO state conditional test has failed

Parameters

Mask defines bitwise which Pins are to be checked.

Value defines bitwise the condition of the input pins defined by Mask.

9.1.16 rtEndIf

long rtEndIf()

Statement for terminating the conditional IO commands rtIfIO and rtElse.

9.1.17 rtFileClose

long rtFileClose()

This command is the closing statement to the "rtFileOpen" function and stores the macro file to the flash memory when

called.

9.1.18 rtFileCloseAtHost

long rtFileCloseAtHost()

This is an alternative closing statement to the function "rtFileOpen" and stores the macro file locally instead of on the

control system's flash memory.

9.1.19 rtFileCloseAtIndex

long rtFileCloseAtIndex(long Index)

Closing statement for the method "rtFileOpen" with the option of storing the macro file at a specific index location.

Parameters

Index index of target location to store the file

9.1.20 rtFileDownload

long rtFileDownload(char* FileName, char* DestFile)

This command allows a user to retrieve a macro stored on the internal flash memory of the control system and store in on a

computer.

Parameters

FileName name of the macro on the flash memory

DestFile path of the destination file

9.1.21 rtFileFetch

long rtFileFetch(char* FileName)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 28

This command executes all the commands from the macro stored in a file on the flash memory. When a function call

“rtFileFetch (mymacro)” is encountered, the deflection system will replace this with the contents of the flash file.

Parameters

FileName the name of the file to be executed from the flash.

9.1.22 rtFileOpen

long rtFileOpen(char* FileName)

This command creates a new macro file on the flash. All list commands called after a rtFileOpen will be stored in a file on

the flash memory instead of being executed by the deflection system. Call function rtFileClose to close the macro file.

Subsequently the file can be loaded and executed from the flash by calling the function rtFileFetch. FileName size is limited

to 255 characters.

Parameters

FileName the name of the file to be created on the flash.

9.1.23 rtFileUpload

long rtFileUpload(char* SrcFile, char* FileName)

Upload a file directly to the flash memory.

Parameters

SrcFile path of the file

FileName name of the file on the control system

9.1.24 rtFileUploadAtIndex

long rtFileUploadAtIndex(long Index)

The methods stores a file on the control systems internal flash memory at a specified index location.

Parameters

Index index of target location

9.1.25 rtFontDef

long rtFontDef(char* Name)

In order to facilitate the marking of recurrent characters or symbols (such as, for example, text) one can make use of a font

definition statement. Such a statement contains a series of character definitions which are assigned to ASCII codes - see

"rtCharDef".

Parameters

Name name of the font to be created

9.1.26 rtFontDefEnd

long rtFontDefEnd()

Ending statement for "rtFontDef".

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 29

9.1.27 rtFormatFlash

long rtFormatFlash()

This command start the process of preparing the flash, including setting up an empty file system.

9.1.28 rtGetCanLink

long rtGetCanLink(long Address, long* Value)

This method gets a value from the CAN interface. The address parameter determines which of the two internal CAN

controllers is to be used. Each controller contains 8 bytes, addressed from 0-7 and 7-15, respectively.

Parameters

Address address of the internal CAN controller

Value pointer to the location where the value is to be stored.

9.1.29 rtGetCounter

long rtGetCounter(long* Value)

This method is closely related to "rtResetCounter" and returns the current counter value of the list.

9.1.30 rtGetFieldSize

long rtGetFieldSize(double* Size)

Parameter

Size fieldsize as set in the configuration software, see manual “A2G_Cfg”, in mm.

9.1.31 rtGetFileIndex

long rtGetFileIndex(char* FileName)

Parameters

FileName name of the file for which the index is to be returned

9.1.32 rtGetFlashFirstFileEntry

long rtGetFlashFirstFileEntry(char* FileName, long* AllocatedSize)

This command starts a file search in the file system on the flash and returns the file information of the first file. If the file

system is empty FileName will contain an empty string. A file name should never be larger then 255 characters.

Parameters

FileName pointer to the buffer that will receive the filename

AllocatedSize allocated byte size of the file in the flash memory

9.1.33 rtGetFlashNextFileEntry

long rtGetFlashNextFileEntry(char* FileName, long* AllocatedSize)

This command returns the file information of the next found file in the file system on the flash. If no next file is found

FileName will contain an empty string. Use rtGetFlashFirstFileEntry before using this function. Use this function to cycle

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 30

through the complete file system. If no more files are available FileName contains an empty string.

Parameters

FileName pointer to the buffer that will receive the filename

AllocatedSize allocated byte size of the file in the flash memory

9.1.34 rtGetFlashMemorySizes

long rtGetFlashMemorySizes (long* Total, long* Allocated)

This method retrieves the free memory size on the flash.

Parameter

Total Total available flash memory, expressed in bytes

Allocated Allocated flash memory, expressed in bytes

9.1.35 rtGetIO

long rtGetIO(long* Value)

Query the current status of all the system input and output signals on the X7 digital I/O connector, as one number. Inputs

and outputs signals are either active (1) or inactive (0). The system signals contribute to the Value parameter as follows:

Bit location Signal Contribution to IO value if active

Bit 6 IO7 64 (0x20)

Bit 5 IO6 32 (0x10)

Bit 4 IO5 16 (0x0f)

Bit 3 IO4 8 (0x08)

Bit 2 IO3 4 (0x04)

Bit 1 IO2 2 (0x02)

Bit 0 IO1 1 (0x01)

IO Value number is the sum of the contribution of all active signals:

If Value=2, IO2 signal is active, and all other signal are inactive.

If Value=83, signals IO7(64), IO5(16), IO2(2) and IO1(1) are active (64+16+2+1=83), and all other signals are inactive.

Parameter

Value 7 least significant bits holds the data of the 7 IO pins

9.1.36 rtGetLaserLink

long rtGetLaserLink(long Address, long* Value)

Allows to retrieve status information from an external laser using the LaserLink interface. Refer to rtSetLaserLink and the

LaserLink specifications manual for more information.

Parameters

Address a command identifier for the LaserLink interface

Value pointer to a variable storing the return value

9.1.37 rtGetMaxSpeed

long rtGetMaxSpeed(double* Speed)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 31

Parameters

Speed maximum speed as set in the configuration software, see manual “A2G_Cfg” in mm/sec

9.1.38 rtGetResolvers

long rtGetResolvers(double* X, double* Y)

This method returns the offsets integrated by the resolvers connected with the deflection control system.

9.1.39 rtGetScannerDelay

long rtGetScannerDelay(long* Delay)

Parameters

Delay scanner delay as set in the configuration software, see manual “A2G_Cfg”, in µsec

9.1.40 rtGetSerial

long rtGetSerial(long* Serial)

Returns the serial number of the laser deflection system.

Parameters

Serial serial number of the deflection control system.

9.1.41 rtGetSetpointFilter

long rtGetSetpointFilter(long* TimeConst)

Parameters

TimeConst time constant of setpoint low pass filter in µsec

9.1.42 rtGetStatus

long rtGetStatus(long* Memory)

This method retrieves the current status of the rhothor™ deflection control system. Use this method to retrieve the

resources used by the system. This control function has deviating return codes.

Parameters

Memory total size of the execution lists expressed in bytes

Deviating return codes

ERR_OK, -1 system is currently idle

ERR_BUSY, 2 system is currently processing a list

9.1.43 rtGetVersion

long rtGetVersion(char* Version)

With this method the version of the DLL can be retrieved. The application needs to set pointer “Version” to allocated

memory prior to calling the function.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 32

Parameters

Version version string, terminated with a 0 byte

9.1.44 rtIfIO

long rtIfIO(long Value, long Mask)

Conditional statement for checking the state of IO pins. Useful when interfacing and synchronising with external devices.

See functions "rtElse" and "rtEndIf".

Parameters

Mask defines bitwise which Pins are to be checked.

Value defines bitwise the condition of the input pins defined by Mask.

9.1.45 rtIndexFetch

long rtIndexFetch(long Index)

Loads a job file by index as opposed to loading it by name. See "rtFileFetch".

Parameters

Index index of the file location

9.1.46 rtJumpTo

rtJumpTo(double X, double Y)

This command generates a jump to co-ordinate (X, Y).

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

9.1.47 rtJumpTo3D

rtJumpTo3D(double X, double Y, double Z)

This command generates a jump to co-ordinate (X, Y, Z). This function should only be used with 3D deflection systems.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

Z target Z co-ordinate in mm

9.1.48 rtLineTo

rtLineTo(double X, double Y)

This command marks a line from the current position to co-ordinate (X, Y).

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 33

9.1.49 rtLineTo3D

rtLineTo3D(double X, double Y, double Z)

This command marks a line from the current position to co-ordinate (X, Y, Z). This function should only be used with 3D

deflection systems.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

9.1.50 rtListClose

long rtListClose()

This method closes an open command list. Its behavior depends on the selected list execution mode.

Mode LIST_START

Calling “rtListClose()” will start the execution of the command list. If there is another list still running when this functions is

called, the list data is moved into the running list. This list concatenation allows batch processing by the application without

idle times at list swaps.

Mode AUTO_START

In this mode the list is used as a fifo between application and deflection control system. In principle, every command added

to the list is all set for execution. However commands are grouped into packages to optimise communication speed. Each

call to a control function is added to a package. When a package is full it is added to the execution list. Calling

“rtListClose()” will force the commands stored in the last package into the execution list.

9.1.51 rtListOpen

long rtListOpen(long Mode)

This method opens a command list. It is to be called before using control commands. Parameter “Mode” defines the list

execution mode.

Parameters

Mode=1 Sets execution mode to LIST_START. The deflection system will execute all

commands appended to the command list after “rtListClose()” is called.

Mode=2 Sets execution mode to AUTO_START. The deflection system will execute the

commands from the command list automatically. The user only appends execution

commands to the list.

Mode=3 Set execution mode to BOOT_START. The command list will be written as

bootscript after “rtListClose()” is called.

Mode=4 Set execution mode to LOAD_START. The command list will be completely loaded

into the volatile memory of the controller board.

9.1.52 rtLoadCalibration

long rtLoadCalibration()

Stores the current calibration as the default in the control system flash memory.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 34

9.1.53 rtLoadCalibrationFile

long rtLoadCalibrationFile(const char* FileName)

This method loads a calibration file into the rhothor™ deflection control system. The current calibration is overwritten.

Parameters

FileName 0 terminated string containing the full file name and path

9.1.54 rtLoadCalibrationFileZ

rtLoadCalibrationFileZ(const char* FileName)

Same as rtLoadCalibrationFile but for Z-axis calibration.

9.1.55 rtMoveTo

long rtMoveTo(double X, double Y)

This command generates a linear movement starting from the current position to co-ordinate (X, Y) using the marking

speed. The movement is done with the laser switched off.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

9.1.56 rtMoveTo3D

long rtMoveTo3D(double X, double Y, double Z)

This command generates a linear movement starting from the current position to co-ordinate (X, Y, Z) using the marking

speed. The movement is done with the laser switched off. This function should only be used with 3D deflection systems.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

Z target Z co-ordinate in mm

9.1.57 rtParse

long rtParse(char* Cmd)

This method allows to send marking commands to the Rhothor deflection system in text format and can be used, for

example, for command interpreting.

Parameters

Cmd command string

9.1.58 rtPulse

long rtPulse(double X, double Y)

This command starts a linear movement from the current position to co-ordinate (X, Y) using the marking speed. Afterwards

the laser is switched on for 5 µsec. If the command is followed by a marking command the laser is not switched off on

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 35

termination of the “rtPulse” command.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

9.1.59 rtPulse3D

long rtPulse3D(double X, double Y, double Z)

This command starts a linear movement from the current position to co-ordinate (X, Y, Z) using the marking speed.

Afterwards the laser is switched on for 5 µsec. If the command is followed by a marking command the laser is not switched

off on termination of the “rtPulse3D” command. This function should only be used with 3D deflection systems.

Parameters

X target X co-ordinate in mm

Y target Y co-ordinate in mm

Z target Z co-ordinate in mm

9.1.60 rtResetCalibration

long rtResetCalibration

Calling this method resets the calibration tables in the deflection control system. Table entries for image distortion are

loaded with 0. Table entries for power mapping are pre-set to 100%.

9.1.61 rtResetCalibrationZ

long rtResetCalibrationZ()

The same as rtResetCalibration but for Z-axis calibration data.

9.1.62 rtResetCounter

long rtResetCounter()

Resets the list counter to zero. The list counter increments for every subsequent command issued and can be polled in

applications where status information about a job is required. See rtGetCounter for more information.

9.1.63 rtResetResolver

long rtResetResolver(long Nr)

Resets a resolver back to zero.

Parameters

Nr Resolver identifier

9.1.64 rtSelectDevice

long rtSelectDevice(char* IP)

Call this method to address an ethernet control device through its IP. If the function is called with “USB” as string value, a

connected USB control device is searched. This method should be called before using any other DLL method in your

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 36

application. Call this method at the start of the application or when the control system needs a reset.

Parameters

IP poointer to string containing IP nr or “USB”

9.1.65 rtScanCanLink

long rtScanCanLink(long Address, long Node, long Index, long SubIndex)

Parameters

Address internal CAN controller address

Node node identifier

Index CANOpen object dictionary index

SubIndex CANOpen object dictionary sub-index

9.1.66 rtSendUartLink

long rtSendUartLink(char* Data)

This method send data over the UART link.

Parameters

Data pointer to the string to be transmitted followed by a NULL character

9.1.67 rtSetCanLink

long rtSetCanLink(long Node, long Index, long SubIndex, char* Data)

Send data over the CAN link interface. See the CANOpen specifications for more information.

Parameters

Node receiving node

Index object dictionary index

SubIndex subindex of the object dictionary

Data pointer to the string to be transmitted followed by a NULL character

9.1.68 rtSetHover

long rtSetHover(long Time)

The method is used in combination with "rtSetLead" and specifies the amount of time that the deflection system hovers

above the lead position before continuing.

Parameters

Time time to hover in µs

9.1.69 rtSetImageMatrix

long rtSetImageMatrix(double a11, double a12, double a21, double a22)

Set matrix coefficients for local coordinate transformations.

The resulting image transformation matrix is:

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 37

Parameters

a11, a12, a21, a22

 matrix coefficients

9.1.70 rtSetImageMatrix3D

long rtSetImageMatrix3D(double a11, double a12, double a21, double a22, double a31, double a32)

Set matrix coefficients for local coordinate transformations.

The resulting image transformation matrix is:

Parameters

a11, a12, a21, a22, a31, a 33

 matrix coefficients

9.1.71 rtSetImageOffsXY

long rtSetImageOffsXY(double X, double Y)

Sets an absolute image offset.

Parameters

X X-axis offset

Y Y-axis offset

9.1.72 rtSetImageOffsRelXY

long rtSetImageOffsXY(double X, double Y)

Sets an image offset with respect to the current position.

Parameters

X X-axis offset

Y Y-axis offset

9.1.73 rtSetImageOffsZ

long rtSetImageOffsZ(double Z)

Sets an absolute image offset in the Z axis.

Parameters

Z Z-axis offset

a11 a12 0

a21 a21 0

 0 0 1

a11 a12 0

a21 a21 0

a31 a32 1

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 38

9.1.74 rtSetIO

long rtSetIO(long Value, long Mask)

This command sets the output signal levels on the X7 digital I/O connector:

bit 0 of “Value” is copied to the output bit of IO1 only when bit 0 of “Mask” is true,

bit 1 of “Value” is copied to the output bit of IO2 only when bit 1 of “Mask” is true,….

The output value of an IO-pin is visible when the pin is configured as an output. This command has no effect on IO-pins

configured as an input or used by special function blocks. The output values of IO-pins 5,6 and 7 needs to be set before

their laser signals are available.

Parameters

Value the new output values for the IO pins

Mask defines bitwise which IO pins are to be changed

9.1.75 rtSetJumpSpeed

long rtSetJumpSpeed(double Speed)

Call this method to set the jumping speed. The speed value remains in force until a next call of rtSetJumpSpeed. Functions

"JumpTo" and "JumpTo3D" use this value.

Parameters

Speed jump speed in mm/sec, Speed must be set lower than or equal to maximum speed

9.1.76 rtSetLaser

long rtSetLaser(bool OnOff)

During command processing the laser is controlled together with the deflection motors. With this command the laser can be

switched on continuously. When the laser is switched on using this command, it remains activated until explicitly switched

off by calling “rtSetLaser(false)”.

Parameters

OnOff=true turn the laser continuously on.

OnOff=false switch to command-driven laser.

9.1.77 rtSetLaserLink

long rtSetLaserLink(long Address, long Value)

This method applies to external laser control using the LaserLink interface and allows the user to set the laser parameters.

More more information regarding the availble commands refer to the LaserLink datasheet.

Parameters

Address a command identifier for the LaserLink interface

Value value to be placed on the LaserLink output

9.1.78 rtSetLaserTimes

long rtSetLaserTimes(long GateOnDelay, long GateOffDelay)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 39

During marking, the command interpreter of the deflection control system generates co-ordinates together with a gate

signal in a synchronised fashion. A shifter allows the gate signal to be shifted in time related to the co-ordinate stream. The

method sets the time values for this shifter. Positive values for will postpone gate output related to co-ordinate output, while

negative values will shift the gate signal before the co-ordinates. Both values can be positive or negative and can be set

independent of each other.

Parameters

GateOnDelay sets the time shift for rising edges of gate

GateOffDelay sets the time shift of the falling edges of gate

9.1.79 rtSetLead

long rtSetLead(long Time)

Certain applications require a constant marking speed to prevent unwanted or excessive laser-material interaction. This

function allows the user to specify a lead time to allow the deflection system to accellerate and decellerate prior to marking

to ensure a constant laser exposure.

Parameters

Time lead time in µs

9.1.80 rtSetLoop

long rtSetLoop(long Repetitions)

Opening statement for a loop. Any commands following the rtSetLoop and preceeding the rtDoLoop commands are

repeated. The number of repetitions are set by the Repetitions variable.

Parameters

Repetitions Number of times to repeat the loop; 0 means endless loop

9.1.81 rtSetMatrix

long rtSetMatrix(double a11, double a12, double a21, double a22)

This command sets the transformation matrix on the deflection system. An application can rotate and stretch images in the

XY- plane using the transformation matrix. The setting remains valid until the next call of “rtSetMatrix”.

Transformation on co-ordinates

Xout = a11*Xin + a12*Yin

Yout = a21*Xin + a22*Yin

Zout = Zin

Example: rotation

a11=cosine(rotation angle)

a12=-sine(rotation angle)

a21=sine(rotation angle)

a22=cosine(rotation angle)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 40

9.1.82 rtSetMaxSpeed

long rtSetMaxSpeed(double Speed)

Sets the maximum allowed speed of the deflection system.

Parameters

Speed maximum speed of the deflection system in mm/sec.

9.1.83 rtSetMinGatePeriod

long rtSetMinGatePeriod(long Time)

This method allows to the user to specify the minimum allowable gate period for laser triggering. Usefull in pulsed laser

operation where the laser must regenerate before re-triggering.

Parameters

Time Minimum gate period in µs

9.1.84 rtSetOTF

long rtSetOTF(long Number, bool On)

Method used to disable the resolver dependent-offset used during on-the-fly marking. This is useful when the laser is off

and it is temporarily not required to track the movement of the resolver. Once enabled again the deflection systems jumps

to the current resolver position.

Parameters

Number identifier of the resolver (1 or 2)

On TRUE/FALSE - enable or disable OTF

9.1.85 rtSetOffsIndex

long rtSetOffsIndex(long Index)

The CUA control unit has a register capable of storing up to 8 different offset presets which can be written using ethernet

commands. Using this function in a marking job selects the desired index to be used for the marking of any consecutive

commands.

Parameters

Index offset index (0-7)

9.1.86 rtSetOffsXY

long rtSetOffsXY(double X, double Y)

This method sets the XY-offset vector on the deflection control system. The offset remains valid until the next call of

“rtSetOffsXY”.

Transformation on co-ordinates

Xout = Xin + X

Yout = Yin + Y

Zout = Zin

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 41

9.1.87 rtSetOffsZ

long rtSetOffsZ(double Z)

This method sets the Z-offset for the co-ordinates. The offset remains valid until the next call of “rtSetOffsZ”.

Transformation on co-ordinates

Xout = Xin

Yout = Yin

Zout = Zin + Z

9.1.88 rtSetOscillator

long rtSetOscillator(long Nr, double Period, double PulseWidth)

This method sets the parameter of one of the 3 internal oscillator signals.

Parameters

Nr identifies the oscillator. Can be 1, 2 or 3.

Period µs; range [0.030, 1000000]

PulseWidth µs; range [0.015, Period-0.015]

9.1.89 rtSetPulseBulge

long rtSetPulseBulge(double Factor)

This method is useful in applications where a pulsed laser is used for rapid grid marking. Due to the finite track delay of the

deflection head, marking errors are likely to occur particularly in regions where rapid changes in position are required

(corners, zig-zag patterns, etc.). Adjusting the pulse bulge allows the user to pre-compensate for such tracking errors.

Parameters

Factor bulge factor of the desired bulge

9.1.90 rtSetResolver

long rtSetResolver(long Nr, double StepSize, double Range)

A single phase or dual phase resolver can be used for measuring position movements when a deflection system is marking

the workpiece on the fly. One signal pair for each phase is used to connect the resolver. Any signal change messages a

position change to the deflection control system. An integrator adds or subtracts “StepSize” with every change. The range

of the integration lies within –“Range”/2 and “Range”/2. The integrator overflows to –“Range”/2 and underflows to “Range”/2.

Its value is used as an offset value during the marking. Calling this command does not only declares “StepSize” and

“Range” but also clears the integrator value. Two resolvers can be connected to the deflection system.

The method can also be called with “Range” set to zero. In this case the integration range is unlimited, from -

32768*FieldSize to 32767*FieldSize.

Parameters

Nr=1 to set the resolver that offsets the X-axis of the deflection control system

Nr=2 to set the resolver that offsets the Y-axis of the deflection control system

StepSize incremental size for the integration, negative values to change direction, in mm

Range range of the integration in mm.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 42

9.1.91 rtSetResolverRange

long rtSetResolverRange(long Nr, double Range)

Sets the maximum range of the resolver. In other words, the maximum possible position which can be indicated by the

resolver system.

Parameters

Nr Resolver identifier

Range Maximum position returned by the resolver (set to 0 for infinite range)

9.1.92 rtSetSpeed

long rtSetSpeed(double Speed)

Call this method to set the marking speed. The speed value remains in force until a next call of rtSetSpeed. All vector

interpolation commands (“rtLineTo”, “rtArcTo”, “rtMoveTo”,…) are processed using the marking speed. Jump commands

(“rtJumpTo”) are executed using the jump speed.

Parameters

Speed marking speed in mm/sec, Speed must be set lower than or equal to maximum speed

9.1.93 rtSetVarBlock

long rtSetVarBlock(long Index, char Data)

Sets the data contained in the var block at the specified index position. Using the var block it is possible to define

sequences of recurring characters such as text. The following example illustrates how the text "TEST" is written into the

first four var block locations:

rtSetVarBlock(0,84);

rtSetVarBlock(1,69);

rtSetVarBlock(2,83);

rtSetVarBlock(3,84);

Note that the numbers in the second argument are ASCII codes representing each of the letters in the string.

Parameters

Index index of the terget location in the var block (0-255)

Data data to be written to the var block

9.1.94 rtSetWobble

long rtSetWobble(double Diameter, long Freq)

The method allows to set the wobble around any marking. Wobble is a time-varying offset with a specified frequency

around a circle of a given diameter in the XY-plane. The control system superimposes this offset onto the current co-

ordinates. To disable the wobble, set the diameter to zero. Note that wobble is only active when the gate is active.

Parameters

Diameter diameter in mm of the circular wobble

Freq freaquency in Hertz (revolutions per second)

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 43

9.1.95 rtSleep

long rtSleep(long Time)

This method suspends the execution of the current command list for a specified interval. The motors are stopped and the

gate signal is switched off.

Parameters

Time idle time in µsec

9.1.96 rtStoreCalibration

long rtStoreCalibration()

This method stores the calibration settings to the internal flash memory of the deflector control system.

9.1.97 rtStoreCalibrationFile

long rtStoreCalibrationFile(const char* FileName)

This method stores the current calibration in a calibration file. This method should be called at the end of a calibration. At

power up the calibration on the deflection control system is cleared. The file is used to restore it.

Parameters

FileName 0 terminated string containing the full file name and path.

9.1.98 rtStoreCalibrationFileZ

long rtStoreCalibrationFileZ(const char* FileName)

Same as "rtStoreCalibrationFile" but for Z-axis calibration data.

Parameters

FileName 0 terminated string containing the full file name and path.

9.1.99 rtSuspend

long rtSuspend()

This command puts the controller DSP card into sleep mode and halts all executions. Wake-up can be achieved by issuing

an ethernet command, but requires a control system of the type "CUA-ETH".

9.1.100 rtVarBlockFetch

long rtVarBlockFetch(long Start, long Size, char* FontName)

Gets information stored in a var block for jobs using job files. See "rtFileOpen" for more information.

Parameters

Start start location in the var block (0-255)

Size length of the segmant in the var block in bytes

FontName pointer to a string containing the font name

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 44

9.1.101 rtWaitCanLink

long rtWaitCanLink(long Address, long Value, long Mask)

For systems using a CAN interface this function can be used to send the deflection system into an idle state until a

specified message is received. A mask can be used to set "don't care" bits to listen for a range of different values.

Parameters

Address internal CAN controller address (0-7, 8-15)

Value value to listen for

Mask mask for "don't care bits"

9.1.102 rtWaitIO

long rtWaitIO(long Value, long Mask)

Pins on the X7 digital I/O connector that are configured PC DIGITAL IN can be used for waiting. With rtWaitIO the rhothor™

deflection control system goes idle till the IO state defined by Value and mask is reached.

Parameters

Mask defines bitwise which Pins are to be checked.

Value defines bitwise the condition of the input pins defined by Mask.

9.1.103 rtWhileIO

long rtIfIO(long Value, long Mask)

rtWhile function let you repeat a block of functions while a specified IO state is True.

Parameters

Mask defines bitwise which Pins are to be checked.

Value defines bitwise the condition of the input pins defined by Mask.

9.1.104 rtWaitPosition

long rtWaitPosition(double Window)

Halts execution until the control system reaches a target position specified in an earlier move or jump command. The

tolerance around this target position is defined by a rectangle.

Parameters

Window Size of the rectangular tolerance region around the target position

9.1.105 rtWaitResolver

long rtWaitResolver(long Nr, double TriggerPos, long TriggerMode)

Waits until the resolver returns a specified position.

Parameters

Nr resolver identifier (1 or 2)

TriggerPos position to wait for in mm

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 45

TriggerMode (1 or 2) Trigger immediately before or after the specified target position, respectively.

 www.newson.be

 Copyright Newson NV, 2000-2015 A2G_App_03 page 46

10 APPENDIX B: FILE FORMAT CALIBRATION DATA FILE

// general:

// "//" line comment

// "[]" data between square braquets is optional

// ";" separator between values

//

// X and Y descriptor:

// defines calibration size and the number of samples (number must be odd)

// default values: calibration size = Fieldsize, samples = 33

// calibrationsize<Fieldsize

//

// Z descriptor:

// defines the Z levels used during the calibration

// default values: Z1=0, Z2=0

// -Fieldsize<=Z1,Z2<=FieldsizeZ/2

//

// array data:

// starting at left bottom up to right top, X direction first

// dx = actual x position - calibrated x position, default value 0

// dy = actual y position - calibrated y position, default value 0

// dz = actual z position - calibrated z position, default value 0

//

[X:x_calibration_size;x_samples] // descriptor for X axis

[Y:y_calibration_size;y_samples] // descriptor for Y axis

[Z:Z1,Z2] // descriptor for Z axis

//

// Z1 array data, size must be equal to xsamples*ysamples

//

(dx;dy[;dz]);...

...

...;(dx;dy[;dz])

//

// Z2 array data, size must be equal to xsamples*ysamples

// if omitted, Z2 array data equals Z1 array data

// Z2 array data is ignored when Z2 equals Z1

//

[(dx;dy[;dz]]),...

...

...;(dx;dy[;dz])]

